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Dynamic games

Why do we care of dynamic games? We already know that we can
represent them in normal form and apply the concept of Nash
Equilibrium.

Unfortunately the Nash Equilibrium is too weak in the context of
truly dynamic games: in these games it is possible that successive
players try to influence preceding rivals by making empty threats, i.e.
by announcing strategies that prescribe to play a suboptimal action at
a given information set.

We look for and apply refinements of the NE concept and for this we
need to study the dynamic games in their extensive form.
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Dynamic games with complete information

We focus on two classes of games:

games with perfect information

multi-stage game (possibly infinite multi-stage games)

where no player has private information
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Definitions

Definition
Games of perfect information are games where at each stage only one
player moves.

Definitions
Multi-stage games are composed of several stages, possibly infinite, where

1 all actions previously played in the game are known to all players
2 all players play simultaneously at each stage (and do not know what
rivals are playing at that stage)
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Sequential Rationality

To rule out non-credible threats we need:
Sequential rationality: all players play their best response at each
information set.

In games with perfect information it follows that players play their
best action at each decision node.

Hence, if we believe that players’behavior satisfies sequential
rationality, and that this is common knowledge, then we can predict
the best strategy that each player can play by solving the game
starting from the end, from the next-to-last node (i.e. excluding
terminal nodes) (backward induction principle).
Therefore in games with perfect information each player can
anticipate the actions that the following players play at their decision
nodes.

L. Rocco (Padova) Dynamic Games April 2015 5 / 22



Zermelo’s Theorem

Theorem
Every finite game of perfect information has a NE in pure strategies that
can be derived through backward induction. Moreover if no player has the
same payoff at any two terminal nodes, then there is a unique Nash
Equilibrium that satisfies the backward induction principle.

Note: how much rationality for backward induction? Think at the
centipede game: player 1 and 2 start with 1 dollar each. They alternate
declaring stop/continue. If a player says continue a referee takes 1 dollar
from him and gives 2 dollars to the opponent. If a player says stop the
game ends. Otherwise the game ends when both players have 100 dollars.
Backward induction outcome is "say stop immediately". This is the worst
outcome: but if player 2 thought that player 1 were not fully rational...
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Exercise.

There are 2 firms i = 1, 2. Let qi denote the quantity (integer) produced
by firm i = 1, 2 at cost 4qi .Each firm cannot produce more than 3. The
total demand is P(Q) = 6−Q where Q = q1 + q2. Firm 1 moves first
choosing the quantity it wants to produce; firm 2 moves having observed
the quantity produced by firm 1. Let describe the set of pure strategy of
each player. Find a NE of the game in which firms produce the Cournot
quantity. Find a NE in which firm 2 produced the monopoly outcome and
firm 1 produces zero. Find the outcome ob backward induction of the
game.
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Subgames

The backward induction procedure can be generalized to all dynamic
games and in particular to multi-stage games.
Preliminary we need to define:

Definition
A subgame of an extensive form game is a subset of the game having the
following properties:

it begins with an information set which is a singleton and contains all
the decision nodes that are successors of this node, and only these
nodes;

if a decision node x is in the subgame then every x ′ ∈ H(x) belongs
to this subgame, where H(x) is the information set containing the
node x .
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Subgames (cont.)

Note:

the entire game is a subgame

in games of perfect information every decision node initiates a
subgame

taken in isolation, a subgame is a game in its own right
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Subgame Perfect Nash Equilibrium

Definition
A profile of strategy σ = (σ1, ..., σn) is a SPNE of a game if it induces a
NE in every subgame.

Note:

a SPNE is a NE because the entire game is itself a subgame

in games of perfect information the set of SPNE coincides with the
set of NE obtained by backward induction

SPNE requires that players play NE strategies in each subgame, even
in the subgame that would be played only as result of (other) players’
mistake.
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Finding SPNE

To identify the set of SPNE in general finite dynamic games, we can apply
a generalized backward induction procedure:

1 start from the end and identify the final subgames (i.e. which do not
contain a subgame in themselves)

2 select one NE in each of these final subgames and derive the reduced
extensive form (i.e. substitute the NE payoff to the node where the
subgame begins)

3 repeat steps 1 and 2.
4 if multiple equilibria are never encountered in any subgame, then
there exists a unique SPNE.
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Finding SPNE (cont.)

Theorem
In T-stage games, if there is a unique NE in each stage-game, then there
is a unique SPNE which consists of each player playing the equilibrium
strategy of the stage-game at each stage-game, independently of the
history of the game

Note: if multiple NE exists at each stage, then history dependent
strategies can be played: a player might promise later rewards or
punishments to influence current rivals’actions.

Note: when games have infinite horizon we cannot use backward
induction, but the concept of SPNE is still defined. However infinite
horizon allows to play many credible strategies so that many SPNE
will exist (eg. repeated Cournot game). Thus, typically SPNE loses
its appeal
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History dependent strategies

Recall: in multi-stage games,if only one NE exists in each stage-game,
there will be a unique and history-independent SPNE
This is not the case when there are many NE in the stage game.
Example: consider this stage-game repeated twice, where payoff is the
sum of stage payoffs

L M R
U 0,-2 -1,-1 0,-2
M 4,3 -2,0 6,0
D 2,3 -2,0 5,5

There are two stage-game NE: (M,L), (U,M) with payoffs (4,3) and
(-1,-1)

In the two-stage game the following strategy profile is a SPNE: "Play
(D,R) in the first stage. If the first stage outcome is (D,R), then play
(M,L) in the second stage. Otherwise play (U,M) in the second stage"
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(cont.)

In any second stage subgame, this strategy profile prescribes to play a
NE

In the sub-game starting in the first stage, i.e. the whole game, the
payoff matrix resulting from the reduced extensive form obtained by
applying generalized backward induction is

L M R
U 0-1,-2-1 -1-1,-1-1 0-1,-2-1
M 4-1,3-1 -2-1,0-1 6-1,0-1
D 2-1,3-1 -2-1,0-1 5+4,5+3

Now (D,R) is a Nash Equilibrium of the subgame

Note: (D,R) is not an equilibrium of the stage-game
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Payoffs in multi-stage games

In multi-stage games we assume that payoffs are:

either the discounted sum of the stage-game payoffs

Ui =
T

∑
t=0

δtgi (at ) where at = (at1...atI )

or the average discounted payoff

Ui =
1− δ

1− δT−1

T

∑
t=0

δtgi (at )

which gives the average stage-payoff independently of T . Example: if the
stage-game payoffs are always v , the average discounted payoff is v for
any T .
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Strategies in multi-stage games

Let the first period be labeled t = 0. The last period is T , so we have
a total of T + 1 periods.

The actions played in the stage game G are

at = (at1...atI )

The history of the game up to period t is a description of all the
actions played from the beginning of the game

ht = (a0, a1, . . . , at−1)

hT+1 is the history at the terminal nodes.

Ht is the set of all possible histories up to period t
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Strategies in multi-stage games (cont.)

To condition strategies on past events, they are made functions of history.
So we write player i ′s period-t stage-game strategy as the function sti
where sti (ht ) = ati defined to all possible histories up to period t.

Note: a player’s stage-game action in any period and after any history
must be drawn from her action space for that period.

Definition

A pure strategy for player i is a sequence of functions {sti }Tt=0 such that
sti : Ht → Ati which specifies what a player must do at each stage for any
previous history.

The strategy profile played at time t is

st = (st1 , ..., s
t
I )
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Theorem
In every multi-stage game there exists an open-loop SPNE composed of
history-independent strategies which induce a Nash equilibrium in each
stage game.

Theorem
In every multi-stage game, if a closed-loop SPNE exists, i.e. such that
strategies are history-dependent, the outcome induced in the last stage
must be a Nash equilibrium of the last stage game.
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Repeated games

A particular stage-game is a repeated game, where the same stage is
repeated each stage.

In a repeated game, the actions available to each player in each stage
are the same and the stage-payoffs depend only on the actions played
in the stage-game.

The environment for a repeated game is stationary (or, alternatively,
independent of time and history). This does not mean the actions
themselves must be chosen independently of time or history.
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Example: repeated prisoner’s dilemma.

Consider discounted payoff with common discount rate δ.

finitely repeated: the only SPNE is (confess,confess)

infinitely repeated: other outcomes are supported as SPNE although
(confess, confess) is still a SPNE.

Don′t confess Confess
Don′t confess -2,-2 -10,-1
Confess -1,-10 -5,-5

trigger strategy: "not confess in the first period; continue in this way until
no player deviates; after any deviation, confess for the rest of the game"

Note: the trigger strategy induces an equilibrium in all subgames,
especially those starting after a deviation, where (confess, confess) is
a NE of the stage game.
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(cont.)

Note:

Patience is the key to support cooperation: in infinitely repeated
games, even small future punishments can deter current deviation.

In infinitely repeated games, the set of SPNE can be much different
(and typically larger) than in finitely repeated games.
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Folk theorem

Theorem
(Friedman, 1971) Given the infinitely repeated game Γ, let α∗ be a
stage-game equilibrium with payoffs e. Then for every payoff profile v with
vi > ei for all player i , there is a δ such that for all δ > δ there is a SPNE
of Γ with average (i.e. per period) payoffs v.

Note: trigger strategies are played but here punishment consists in
playing α∗ after any deviation. Provided that individuals are patient
enough this punishment is strong enough. Moreover, in each subgame
these trigger strategies induce a NE.

Example: infinitely repeated Cournot game. How many SPNE exists
according to Friedman’s Theorem?
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